Электромагнитное поле - определение. Что такое Электромагнитное поле
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Электромагнитное поле - определение

ФИЗИЧЕСКОЕ ПОЛЕ, ВЗАИМОДЕЙСТВУЮЩЕЕ С ЗАРЯЖЕННЫМИ ТЕЛАМИ
ЭМП (физика)
Найдено результатов: 257
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ         
особая форма материи. Посредством электромагнитного поля осуществляется взаимодействие между заряженными частицами. Характеризуется напряженностями (или индукциями) электрических и магнитных полей.
Электромагнитное поле         

особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами (см. Поля физические). Э. п. в вакууме характеризуется вектором напряжённости электрического поля (См. Напряжённость электрического поля) Е и магнитной индукцией (См. Магнитная индукция) В, которые определяют силы, действующие со стороны поля на неподвижные и движущиеся заряженные частицы. Наряду с векторами Е и В, измеряемыми непосредственно, Э. п. может характеризоваться скалярным φ и векторным А потенциалами, которые определяются неоднозначно, с точностью до градиентного преобразования (см. Потенциалы электромагнитного поля). В среде Э. п. характеризуется дополнительно двумя вспомогательными величинами: напряжённостью магнитного поля Н и электрической индукцией D (см. Индукция электрическая и магнитная).

Поведение Э. п. изучает классическая Электродинамика, в произвольной среде оно описывается Максвелла уравнениями, позволяющими определить поля в зависимости от распределения зарядов и токов. Микроскопические Э. п., созданные отд. элементарными частицами, характеризуются напряжённостями микроскопических полей: электрического поля е и магнитного h. Их средние значения связаны с макроскопическими характеристиками Э. п. следующим образом: , . Микроскопические поля удовлетворяют Лоренца - Максвелла уравнениям.

Э. п. неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами; при ускоренном движении частиц Э. п. "отрывается" от них и существует независимо в форме электромагнитных волн (См. Электромагнитные волны).

Порождение Э. п. переменным магнитным полем и магнитного поля - переменным электрическим приводит к тому, что электрические и магнитные поля не существуют обособленно, независимо друг от друга. Компоненты векторов, характеризующих Э. п., образуют, согласно относительности теории (См. Относительности теория), единую физ. величину - Тензор Э. п., компоненты которого преобразуются при переходе от одной инерциальной системы отсчёта к другой в соответствии с Лоренца преобразованиями.

При больших частотах Э. п. становятся существенными его квантовые (дискретные) свойства. В этом случае классическая электродинамика неприменима и Э. п. описывается квантовой электродинамикой (См. Квантовая электродинамика).

Лит.: Тамм И. Е., Основы теории электричества, 9 изд., М., 1976; Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики, т. 2); Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, в. 5-7, М., 1966-67; Ландау Л. Д., Лифшиц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); их же, Электродинамика сплошных сред, М., 1959.

Г. Я. Мякишев.

Электромагнитное поле         
Электромагни́тное по́ле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, а также с телами, имеющими собственные дипольные и мультипольные электрические и магнитные моменты. Представляет собой совокупность электрического и магнитного полей, которые могут, при определённых условиях, порождать друг друга, а по сути являются одной сущностью, формализуемой через тензор электромагнитного поля.
Потенциальное поле         
ВЕКТОРНОЕ ПОЛЕ, ПРЕДСТАВЛЯЕМОЕ КАК ГРАДИЕНТ НЕКОТОРОЙ ФУНКЦИИ
Потенциальное поле; Градиентное поле; Безвихревое векторное поле

консервативное поле, векторное поле, циркуляция которого вдоль любой замкнутой траектории равна нулю. Если П. п. - силовое поле, то это означает равенство нулю работы сил поля вдоль замкнутой траектории. Для П. п. а (М) существует такая однозначная функция u (М) (Потенциал поля), что а = gradu (см. Градиент). Если П. п. задано в односвязной области Ω, то потенциал этого поля может быть найден по формуле

,

в которой AM - любая гладкая кривая, соединяющая фиксированную точку А из Ω с точкой М, t - единичный вектор касательной кривой AM и / - длина дуги AM, отсчитываемая от точки А. Если а (М) - П. п., то rot a = 0 (см. Вихрь векторного поля). Обратно, если rot а = 0 и поле задано в односвязной области и дифференцируемо, то а (М) - П. п. Потенциальными являются, например, электростатическое поле, поле тяготения, поле скоростей при безвихревом движении.

Потенциальное векторное поле         
ВЕКТОРНОЕ ПОЛЕ, ПРЕДСТАВЛЯЕМОЕ КАК ГРАДИЕНТ НЕКОТОРОЙ ФУНКЦИИ
Потенциальное поле; Градиентное поле; Безвихревое векторное поле
Потенциальное (или безвихревое) векторное поле в математике — векторное поле, которое можно представить как градиент некоторой скалярной функции координат. Необходимым условием потенциальности векторного поля в трёхмерном пространстве является равенство нулю ротора поля.
Поле Хиггса         
ПОЛЕ, ОБЕСПЕЧИВАЮЩЕЕ СПОНТАННОЕ НАРУШЕНИЕ СИММЕТРИИ ЭЛЕКТРОСЛАБЫХ ВЗАИМОДЕЙСТВИЙ
Хиггсовское поле; Хиггса поле; Поля Хиггса
По́ле Хи́ггса, или хи́ггсовское по́ле, — поле, обеспечивающее спонтанное нарушение симметрии электрослабых взаимодействий благодаря нарушению симметрии вакуума, названо по имени разработчика его теории, британского физика Питера Хиггса. Квант этого поля — хиггсовская частица (хиггсовский бозон).
Поле класса         
Поле объекта
По́ле кла́сса или атрибу́т (переменная-член, data member, class field, instance variable) в объектно-ориентированном программировании — переменная, описание которой создает программист при создании класса. Все данные объекта хранятся в его полях.
Поля физические         
ФИЗИЧЕСКАЯ АБСТРАКЦИЯ
Физическое поле; Поля физические; Фундаментальные поля; Физические поля

особая форма материи; физическая система, обладающая бесконечно большим числом степеней свободы. Примерами П. ф. могут служить электромагнитное и гравитационное поля, поле ядерных сил, а также волновые (квантованные) поля, соответствующие различным частицам.

Впервые (30-е гг. 19 в.) понятие поля (электрического и магнитного) было введено М. Фарадеем (См. Фарадей). Концепция поля была принята им как альтернатива теории дальнодействия, т. е. взаимодействия частиц на расстоянии без какого-либо промежуточного агента (так интерпретировалось, например, электростатическое взаимодействие заряженных частиц по закону Кулона или гравитационное взаимодействие тел по закону всемирного тяготения Ньютона). Концепция поля явилась возрождением теории близкодействия, основоположником которой был Р. Декарт (1-я половина 17 в.). В 60-х гг. 19 в. Дж. К. Максвелл развил идею Фарадея об электромагнитном поле (См. Электромагнитное поле) и сформулировал математически его законы (см. Максвелла уравнения).

Согласно концепции поля, частицы, участвующие в каком-либо взаимодействии (например, электромагнитном или гравитационном), создают в каждой точке окружающего их пространства особое состояние - поле сил, проявляющееся в силовом воздействии на др. частицы, помещаемые в какую-либо точку этого пространства. Первоначально выдвигалась механистическая интерпретация поля как упругих напряжений гипотетической среды - "эфира". Однако наделение "эфира" свойствами упругой среды оказалось в резком противоречии с результатами проведённых позднее опытов. С точки зрения современных представлений, такая механистическая интерпретация поля вообще бессмысленна, поскольку сами упругие свойства макроскопических тел полностью объясняются электромагнитными взаимодействиями частиц, из которых состоят эти тела. Теория относительности, отвергнув концепцию "эфира" как особой упругой среды, вместе с тем придала фундаментальный смысл понятию П. ф. как первичной физической реальности. Действительно, согласно теории относительности, скорость распространения любого взаимодействия не может превышать скорости света в вакууме. Поэтому в системе взаимодействующих частиц сила, действующая в данный момент времени на какую-либо частицу системы, не определяется расположением др. частиц в этот же момент времени, т. е. изменение положения одной частицы сказывается на др. частице не сразу, а через определённый промежуток времени. Т. о., взаимодействие частиц, относительная скорость которых сравнима со скоростью света, можно описывать только через создаваемые ими поля. Изменение состояния (или положения) одной из частиц приводит к изменению создаваемого ею поля, которое отражается на др. частице лишь через конечный промежуток времени, необходимый для распространения этого изменения до частицы.

П. ф. не только осуществляют взаимодействие между частицами; могут существовать и проявляться свободные П. ф. независимо от создавших их частиц (например, Электромагнитные волны). Поэтому ясно, что П. ф. следует рассматривать как особую форму материи.

Каждому типу взаимодействий в природе отвечают определённые П. ф. Описание П. ф. в классической (не квантовой) теории поля производится с помощью одной или нескольких (непрерывных) функций поля, зависящих от координаты точки (х, у, z), в которой рассматривается поле, и от времени (t). Так, электромагнитное поле может быть полностью описано с помощью четырёх функций: скалярного потенциала φ(х, у, z, t) и вектор-потенциала А (х, у, z, t), которые вместе составляют единый четырёхмерный вектор в пространстве-времени. Напряжённости электрического и магнитного полей выражаются через производные этих функций. В общем случае число независимых полевых функций определяется числом внутренних степеней свободы частиц, соответствующих данному полю (см. ниже), например их Спином, изотопическим спином (См. Изотопический спин) и т.д. Исходя из общих принципов - требований релятивистской инвариантности (См. Релятивистская инвариантность) и некоторых более частных предположений (например, для электромагнитного поля - Суперпозиции принципа и т. н. градиентной инвариантности), можно из функций поля составить выражение для действия (См. Действие) и с помощью Наименьшего действия принципа (см. также Вариационные принципы механики) получить дифференциальные уравнения, определяющие поле. Значения функций поля в каждой отдельной точке можно рассматривать как Обобщённые координаты П. ф. Следовательно, П. ф. представляется как физическая система с бесконечным числом степеней свободы. По общим правилам механики можно получить выражение для обобщённых импульсов (См. Обобщённые импульсы) П. ф. и найти плотности энергии, импульса и момента количества движения поля.

Опыт показал (сначала для электромагнитного поля), что энергия и импульс поля изменяются дискретным образом, т. е. П. ф. можно поставить в соответствие определённые частицы (например, электромагнитному полю - Фотоны, гравитационному - Гравитоны). Это означает, что описание П. ф. с помощью полевых функций является лишь приближением, имеющим определённую область применимости. Чтобы учесть дискретные свойства П. ф. (т. е. построить квантовую теорию поля), необходимо считать обобщённые координаты и импульсы П. ф. не числами, а Операторами, для которых выполняются определённые Перестановочные соотношения. (Аналогично осуществляется переход от классической механики к квантовой механике (См. Квантовая механика).)

В квантовой механике доказывается, что систему взаимодействующих частиц можно описать с помощью некоторого квантового поля (см. Квантование вторичное). Т. о., не только каждому П. ф. соответствуют определённые частицы, но и, наоборот, всем известным частицам соответствуют квантованные поля. Этот факт является одним из проявлений корпускулярно-волнового дуализма (См. Корпускулярно-волновой дуализм) материи. Квантованные поля описывают уничтожение (или рождение) частиц и одновременно рождение (уничтожение) античастиц (См. Античастицы). Таким полем является, например, электрон-позитронное поле в квантовой электродинамике.

Вид перестановочных соотношений для операторов поля зависит от сорта частиц, соответствующих данному полю. Как показал В. Паули (1940), для частиц с целым спином операторы поля коммутируют и указанные частицы подчиняются Бозе-Эйнштейна статистике (См. Бозе - Эйнштейна статистика), в то время как для частиц с полуцелым спином они антикоммутируют и соответствующие частицы подчиняются Ферми-Дирака статистике (См. Ферми - Дирака статистика). Если частицы подчиняются статистике Бозе-Эйнштейна (например, фотоны и гравитоны), то в одном и том же квантовом состоянии может находиться много (в пределе - бесконечно много) частиц. В указанном пределе средние величины квантованных полей переходят в обычные классические поля (например, в классические электромагнитное и гравитационное поля, описываемые непрерывными функциями координат и времени). Для полей, отвечающих частицам с полуцелым спином, не существует соответствующих классических полей.

Современная теория элементарных частиц строится как теория взаимодействующих квантовых П. ф. (электрон-позитронного, фотонного, мезонного и др.).

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория поля. 6 изд., М., 1973 (Теоретическая физика, т, 2); Боголюбов Н. Н., Ширков Д. В., Введение в теорию квантованных полей, 2 изд., М., 1974.

С. С. Герштейн.

Соленоидальное поле         
Соленоидальность; Соленоидальное поле; Вихревое поле; Бездивергентное векторное поле

векторное поле, не имеющее источников. Это означает, что Дивергенция вектора а С. п. равна нулю: div а = 0. Примером С. п. служит Магнитное поле, div В = 0, где В - вектор магнитной индукции (См. Магнитная индукция). С. п. можно всегда представить в виде а = rot b, здесь дифференциальный оператор rot - Вихрь (ротор), а вектор b называется векторным потенциалом поля. См. также Векторное исчисление.

Беличье поле         
Беличье Поле
Бе́личье по́ле () — историческая местность Киева, урочище. Расположена в Подольском районе вдоль Белицкой улицы (получила название от названия местности).

Википедия

Электромагнитное поле

Электромагни́тное по́ле — фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, а также с телами, имеющими собственные дипольные и мультипольные электрические и магнитные моменты. Представляет собой совокупность электрического и магнитного полей, которые могут, при определённых условиях, порождать друг друга, а по сути являются одной сущностью, формализуемой через тензор электромагнитного поля.

Электромагнитное поле (и его изменение со временем) описывается в электродинамике в классическом приближении посредством системы уравнений Максвелла. При переходе от одной инерциальной системы отсчёта к другой электрическое и магнитное поле в новой системе отсчёта — каждое зависит от обоих — электрического и магнитного — в старой, и это ещё одна из причин, заставляющая рассматривать электрическое и магнитное поля как проявления единого электромагнитного поля.

В современной формулировке электромагнитное поле представлено тензором электромагнитного поля, компонентами которого являются три компоненты напряжённости электрического поля и три компоненты напряжённости магнитного поля (или — магнитной индукции), а также четырёхмерным электромагнитным потенциалом — в определённом отношении ещё более важным.

Действие электромагнитного поля на заряженные тела описывается в классическом приближении посредством силы Лоренца.

Квантовые свойства электромагнитного поля и его взаимодействия с заряженными частицами (а также квантовые поправки к классическому приближению) — предмет квантовой электродинамики, хотя часть квантовых свойств электромагнитного поля более или менее удовлетворительно описывается упрощённой квантовой теорией, исторически возникшей заметно раньше.

Возмущение электромагнитного поля, распространяющееся в пространстве, называется электромагнитной волной (электромагнитными волнами). Любая электромагнитная волна распространяется в пустом пространстве (вакууме) с одинаковой скоростью — скоростью света (свет также является электромагнитной волной). В зависимости от длины волны электромагнитное излучение подразделяется на радиоизлучение, свет (в том числе инфракрасный и ультрафиолет), рентгеновское излучение и гамма-излучение.

Что такое ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ - определение